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Abstract 

This literature explores the impact of Galactic Cosmic Radiation (GCR) and Solar Energy Particles (SEP) on lunar surface 

radiation levels, using data from OLTARIS and CRATER missions. Applying the Focker-Planck equation with Badhwar-O-Neil 

2020 constraints, we predict radiation levels for 53 ionic particles. The Ap-8 min model addresses trapped protons and neutron 

albedo on the lunar regolith. ACE/CRIS‟s spectrometer data determines the Isotopic Composition of GCR, generating Linear 

Energy Transfer (LET) plots. CRATER and OLTARIS data characterize high-energy particles above the lunar surface. A 

spherical harmonic Lambertian surface is generated, on which contours representing scaled reflectance are obtained by passing 

the data through a Gaussian kernel. ARIMA and Random Forest machine learning models predict parameters, and HZETRN2020 

and OLTARIS data produce an albedo map of the lunar regolith. This research aims to enhance radiation protection strategies for 

future lunar missions and space exploration. The value of scaled reflectance and radiation plots have been generated to help 

understand the impact of the predominant 53 ionic particles covering the range from solar activity particles SEP to the galactic 

radiation GCR. The values are provided by running various stimulations under multiple constraints provided in OLTARIS, and 

the value of these stimulated results are mapped across the lunar surface ranging from -180 degrees to 180degree by -90degree to 

90degree plot, giving an accuracy up to 1895.21 px/m with a resolution of 16 degree per pixel in the generated radiation plot. The 

radiation flux developed provides a concise and detailed understanding of the nature of radiation entrapment on the lunar 

regolith. It successfully translates the lunar albedo value as per the scaled reflectance on the surface.  
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1. Introduction 

Exploration and potential habitation of the Moon have 

become increasingly important goals in the realm of space 

exploration. One of the critical challenges associated with 

lunar missions is the effect of radiation on the lunar surface. 

Understanding the radiation levels on the Moon is essential 

for ensuring the safety and well-being of astronauts and 

equipment during extended stays or permanent settlements [1]. 

This paper studies the effect of GCR (Galactic Cosmic Rays) 

and SEP (Solar Energy Particles) on the lunar surface. Data 

from OLTARIS and Cosmic Ray Telescope Effects for Radi-

ation (CRATER) missions is used. The Badhwar-O-Neil, 

2020 constraints [2] operate on the obtained data. The 

BON2020 model facilitates analysis by taking into account 53 

ionic particles including protons, electrons, alpha particles 
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and heavier ions of carbon, oxygen and nitrogen. Employing 

the Focker-Planc equation [3], integral and differential flux of 

ionic particles are generated. The flux interpolations help 

determine dose rates and their equivalents on lunar surface. 

For analyzing the trapped proton and neutron model in a 

surface the manuscript uses a method named as AP- model. 

The Ap-8 model provides a comprehensive understanding of 

the omnidirectional trapped proton and neutron concentration 

in a lower orbit of the magnetosphere but by changing the 

parameters in the model it can be applied to find the trapped 

proton and neutron particles for a celestial object. There are 2 

formats by which this model can be applied, Ap-8 min model 

and Ap-8 max model, the manuscript uses the AP-8min mode 

as it helps in shedding a better understanding of the trapped 

protons in the solar minimum conditions. The Ap-8 min 

model considers trapped protons and neutron albedo on the 

lunar regolith. By eliminating errors and redundancies, this 

model streamlines the assessment of radiation levels on the 

lunar surface. The isotopic composition of GCR data, ob-

tained from the ACE/CRIS spectrometer [4], facilitates the 

generation of Linear Energy Transfer (LET) integral and 

differential flux plots., enhancing the understanding of the 

lunar radiation environment. Data taken from the Chang‟E4 

lander processed with Beer-Lambert‟s law provides insight 

into the relation between the penetration depth of radiation on 

lunar surface and radiation intensity [5]. In addition to GCR 

and SEP, the research explores parameters characterizing 

high-energy particles above the lunar surface, such as mag-

netic field, orientation, density, speeds, and temperature. 

CRATER and OLTARIS data are processed to provide valu-

able insights into these parameters. To predict the nature of 

these parameters, the study primarily employs ARIMA and 

Random Forest machine learning prediction models. These 

models process training data and operate on test data, to 

model the behavior pattern of the parameters with respect to 

time and predict future behavior [6, 13]. The Lambertian 

surface of the moon is obtained which depicts iso-brightness 

contours on the lunar regolith. Data interpolated from 

HZETRN2020 and OLTARIS provides values of scaled re-

flectance on the lunar surface and is mapped onto the Lam-

bertian surface of the moon [7]. Contours in the scaled re-

flectance plot are obtained by subjecting the calibrated 

Lambertian surface 𝐿(𝜃, ∅) to Gaussian kernel smoothing. 

This process enhances signal-to-noise ratio, facilitating con-

tour identification critical for analyzing geographic variations 

in the reflectance map [22]. The lunar albedo generated pro-

vides valuable insights into the lunar radiation environment. 

2. Methodology and Analysis 

Spectroscopic observations on the lunar surface, as exem-

plified by the Chang‟E-3 (CE-3) missions in situ reflectance 

spectra obtained by the Visible-Near Infrared Spectrometer 

(VNIS), play a pivotal role in unravelling key lunar properties 

[7].  

The dynamic nature of the lunar environment as identified 

by the substantial differences in reflectance spectra between 

the uppermost soil layer and the material immediately beneath 

underscores the complexity of lunar surface composition. 

Traditional methods of lunar sample analysis thus fall short of 

accuracy of the simulation of a lunar surface.  

It is imperative that accurate predictions of lunar surface 

irradiance of solar energy particles are necessary for detailed 

study. An albedo provides detailed insights in this regard. 

Albedo refers to the measure of a surface's reflectivity, indi-

cating the proportion of incoming light that is reflected by the 

surface [11]. It is a bi-hemispherical property, accounting for 

the reflection of solar radiation from both the illuminated and 

shadowed parts of the surface. Albedo values range from 0 

(complete absorption, no reflection) to 1 (total reflection) [12]. 

From a radiation equilibrium perspective, the lunar atmos-

phere has minimal impact on surface albedo. When exposed 

to pure diffuse radiation, the reflectivity of a surface conforms 

essentially to Lambertian behavior [8]. When objects are 

Lambertian, a simple, three-to-seven-dimensional linear 

subspace can capture the set of images they produce [9, 13]. 

The set of lunar images obtained were approximated to 91.3 

percent by a 3D space and to 99.2 percent by a 7D space. 

Render the images of an object and find an 11D subspace that 

approximates these images. These numbers are roughly 

comparable to the 9D space that, according to our analysis, 

approximates the images of a Lambertian object [9, 14]. 

Considering multiple observation points for the generation of 

the scaled reflectance map of the lunar surface, 2 types of 

Lambertian surfaces were considered for the development of 

iso-brightness contours for localizing and segmenting the 

points and regions with higher reflectance. The other Lam-

bertian surface generated is with the spherical harmonic ap-

proximation method which allows for multiple unknown light 

sources and attached shadows [15, 16]. 

Spherical coordinates 

𝑥 = sin(𝜃) co s(∅) 

𝑦 = sin(𝜃) si n(∅) 

𝑧 = co s(𝜃) 

The spherical harmonic function is represented with degree L, 

order M and   
  representing Legender Polynomial. 

𝑌 
 (𝜃, ∅) = √

(2 +1)( − )!

4𝜋( + )!
  
 co s(𝜃) 𝑒𝑖 ∅  

Thus, the corresponding Lambertian Surface comes to be: 

𝐿 =  ∑ ∑ 𝛾[𝐿,𝑀] × 𝑌 
 
 =− 

𝜇−1
 =0

  

where,   coefficient value and 𝛾[𝐿,𝑀]  is the spherical 

harmonic coefficient. Normalizing the data for Lambertian 
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surface, 

𝛼(𝑢, 𝑣) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑢||𝑀||, 𝑣||𝑁||) 

M and N are dimensions of Lambertian surface. Lamber-

tian surface with environmental map provides 

𝑌𝐼(𝜃, ∅) = 𝑅𝑒(∑ ∑ 𝛾[𝐿,𝑀] × 𝑌 
 (𝜃, ∅)𝛼(𝑢, 𝑣) 

 =− 
 −1
 =0 )  

The evaluation of these parameters and proceeded with 

taking the general spherical coordinates and evaluating the 

spherical harmonic coefficients 𝛾[𝐿,𝑀] are computed using 

the formula for spherical harmonics for each coefficient with 

degree L and order M where   
  is the associated Legendre 

polynomial. Generate a normalized and resized environment 

map with the exact dimensions of the Lambertian surface. 

Combining the Lambertian surface with the resized envi-

ronment map involves integrating the product of the Lam-

bertian surface and the environment map over the sphere's 

surface. The summation represents the combination of multi-

ple harmonics. In this case, the integral is implicit in the 

spherical harmonic representation, and the pixel-wise product 

integrates over the entire sphere. Figure 1 presents the results 

of the generated approximation for the Lambertian surface. 

This Lambertian reflectance functions as a straightforward 

low-pass filter on data, facilitating a nuanced understanding. 

Utilizing this simplicity, the constructed model for processing 

dynamic reflectance on the lunar surface. The data enables us 

to determine the Lambertian surface. The Lambertian surface 

provides the mapping of iso-brightness contours. 

 
Figure 1. Represents the Lambertian surface generated with passing through a Lambertian surface generated with a linear space with 3D and 

7D coefficient approximation (a) and using the spherical harmonic model approximation (b). 

Iso-brightness contours refer to lines or curves on a 

graphical representation of an image or a map that connect 

points of equal brightness or intensity. These contours are 

used to visualize regions of an image or a scene where the 

brightness levels are consistent [17, 18]. In the context of 

remote sensing, iso-brightness contours are valuable for un-

derstanding and analyzing variations in reflectance across a 

landscape, helping to identify features with similar reflective 

properties [19]. They provide a visual representation of uni-

form brightness levels, aiding in the interpretation of images 

and the identification of patterns or structures based on their 

reflective characteristics. An image motion model exists for 

the computation of optical flow, which permits brightness 

variation of an image point from one instant of time to the 

next, in the form of a linear transformation involving multi-

plier and offset fields [10]. The iso-brightness contours ob-

tained from the Lambertian surface thus provide a simplified 

medium to measure changes in reflectance on the lunar rego-

lith. Contour regions are mapped on the surface for this pur-

pose. These isolated points help in understanding the variation 

of the scaled reflectance and albedo of the region targeted [20]. 

Image calibration post Lambertian surface  

𝐿𝐼𝐶(𝜃, ∅) =  
 1(𝜃,∅)

𝑇×𝐺
  

where T= exposure time, G = Telescope gain. Applying 

Gaussian filter for smoothening data and finding contours, 

𝐺𝜎(𝑢, 𝑣) =  
1

2𝜋𝜎2
𝑒
−
𝑢2+𝑣2

2𝜎2   

𝐺𝜎(𝑢, 𝑣) =  
1

2𝜋𝜎2
𝑒
−
𝑠𝑖𝑛2(𝜃)

2𝜎2   

𝑆(𝜃, ∅) = 𝐿𝐼𝐶(𝜃, ∅) ∗ 𝐺𝜎(𝜃, ∅) 

After passing the calibrated Lambertian image through the 

Gaussian filter, we land with the smoothened image repre-

sented by 𝑆(𝜃, ∅). The thresholds are generated using this by 

ranging it from the minimum to maximum value of the 

smoothened data by keeping a base threshold represented as T 

and the threshold array of the values is 𝑇𝑣 . The obtained 

contours are represented by 𝐶𝑣. 

𝑇𝑣 ∈ (𝑀𝑖𝑛(𝑆(𝜃, ∅)),𝑀𝑎𝑥(𝑆(𝜃, ∅))|𝑇 → 𝑅) 

𝐶𝑣 = (𝑆(𝜃, ∅)|𝑆(𝜃, ∅) ∈ 𝑇𝑣) 

The Lambertian surface generated 𝐿(𝜃, ∅) from the FITS 
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file is calibrated by factors like exposure time T and telescope 

gain G to remove the redundancies that can be created and to 

generate a normalized data plot for creating a Lambertian 

Surface. Calibration involves adjusting the pixel values to 

represent physical radiance or reflectance values. The cali-

brated reflectance map generated is then smoothened by 

passing to the Gaussian kernel. Gaussian kernel smoothing is 

a simple and effective technique for reducing noise in the 

generated Lambertian surface to identify the distinct contours, 

increasing signal-to-noise ratio and smoothness for statistical 

inference [21]. For smoothening the data, the generated 

Lambertian surface is convolved with the gaussian kernel. 

The generated smoothened data is used to calculate the 

threshold values for the contours where T represents the 

threshold level to keep generated by the trained model. Figure 

2 shows a detailed results of the generated contours from the 

plain Lambertian surface passing through the low pass filter 

with linear space of 3D and 7D subspaces which provides an 

isolation of brightness regions and would play a crucial role 

for generation of the scaled reflectance plot and using the 

gradient on these contour regions the corresponding geo-

graphic variations of the scaled reflectance can be observed. 

 
Figure 2. Contours generation for isolating darkness pass on the generated spherical harmonic Lambertian surface (a) and the reflectance 

mapping of the generated brightness contours for isolating the heavy ionic reflectance (b). 

The data plots obtained from training the model with the 

differential LET model obtained from OLTARIS considering 

a 1002 ray traced thickness where a set of directionally 

emerging rays from the same point is considered to determine 

the thickness penetration through any ray in a particularly 

given direction [22, 23]. The gradient plot observed in the 

Figure 2(b) is obtained by training the contour models with 

Flux (particles/(AMeV-day-cm2)) vs. Energy (AMeV) with 

consideration of 9 radiative particles were considered at Tar-

get source of Lunar regolith, Figure 3 provides the energy to 

flux plot of these values and there effects in logarithmic x and 

y scale these values are used for training the model for the 

remaining plots the gradient descent with green tangent shows 

he region with flux interpolation taking Lunar Albedo Effects 

into considerations. The LET (Linear Energy Transfer) values 

obtained from the ACE/CRIS spectroscopic observatory helps 

in creating a finer graph slope that provides the clean particle 

interpolation of flux, the graph presented in Figure 3 provides 

the target source has a dose rate at 2.029E-01 mGy per day 

due to GCR effects from the free space and the net lunar al-

bedo effect albedo 4.851E-02 mGy. The Fokker-Planck 

equation is a partial differential equation that describes the 

time evolution of a probability density function associated 

with the continuous random motion of particles or a stochastic 

process. The Fokker-Planck equation describes the time 

evolution of the probability distribution of a stochastic pro-

cess on a Euclidean space [28, 29]. The calculated values are 

obtained by solving the derived of Foker-Planck equation also 

named as Badhwar-O'Neill 2020 (BON2020) GCR Model. 

∅(𝑡) the solar modulation potential and considering the fixed 

values of the constants VSW=400 km/s, 𝑟0 = 4 𝐴𝑈 , and 

𝑘0 = 8.81020𝑐𝑚
2/𝑠 [2, 24]. 

𝑘(𝑟,𝑡)

𝑉𝑠𝑤
=

𝛽𝑅𝑘0

∅(𝑡)𝑉𝑠𝑤
[1 + (

𝑟

𝑟0
)
2

]  

The model is trained with the Random Forests regression 

model which combines multiple individual decision tree re-

gressors to create a more robust and accurate predictive model 

for calculating the reflectance variations as observed in the 

Figure 2(b) [25]. Setting up one variable as the target and the 

others as features of the target, the train data is now a function 

of the target as well as the features, feature selection is an 

important research direction in the field of statistical machine 

learning, which is central to improving model training speed 

and classification accuracy and to enhance the interpretability 

of model results. Too many or too few dimensions of the 

features, or features without enough importance will eventu-

ally to some extent, lead to the poor generalization of the 

training model [26]. We have used 3-4 parameters as features 

for our target variable as per the necessity for the model to fit 

onto the dataset, this trained data is now accessed by the 

Random Forest Regressor model for model fitting. 

𝑀𝑆𝐸 =  
1

𝑇𝑣
× ∑ (𝐶𝑣𝑖 − 𝐶𝑣𝑚)

2
𝑖∈𝑚   
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The predicted value –  

𝑦 =  
1

𝑇𝑣
× ∑ 𝑓𝑖(𝑥)

𝑇𝑣
𝑖=1   

where 𝑓𝑖(𝑥) is prediction of the I term. The predicted values 

obtained from this dataset is then used to form a basis for 

mapping the gradients of the iso-brightness contours obtained. 

 
Figure 3. Graphical representation of lux (particles/(AMeV-day-cm2)) vs. Energy (AMeV) for 9 major particles captured for interpolation of 

calculation of the net effect of GCR on the Lunar regolith. 

For a complete and in-depth analysis of all the region and to 

calculate the reflectance properties of the lunar regolith to 

evaluate this spectroscopic analysis the NIR spectroscopic 

dataset provides a detailed analysis of the Spectroscopic 

measurements done for each specific regions of the lunar 

surface [27]. The dataset generated is based on the mission 

and from NASA archives of 1998. This model of data when 

aligned with the current flux interpolation provided by solving 

the derivation of the Focker-Planck equation for a 3D sub-

space we observe a change in the randomness of the motion 

by applying constant volume measurements to figure out the 

randomness of the particles just before collision provides a 

unified solution into how the particles behave just before 

collision [31]. 

The 3D Focker Plank equation is given by –  

𝜕𝑓(𝑟,𝑡)

𝜕𝑡
= 𝐷∇2𝑓(𝑟, 𝑡)  

where 𝐷∇2𝑓(𝑟, 𝑡) deals with the random motion of particles 

in free space. Incorporating Flux and Energy values, 

𝜕𝑓(𝑟,𝑡)

𝜕𝑡
=

𝐷∇2𝑓(𝑟, 𝑡) − ∇ ∙ (∅(𝑟, 𝑡)𝑓(𝑟, 𝑡)) + ∇ ∙ (𝐷∇𝐸(𝑟, 𝑡)𝑓(𝑟, 𝑡))  

Using Maxwellian distribution to understand the effects of 

movement of random particles – 

𝑓(𝑣) =  (
𝑚

2𝜋𝐾𝑏𝑇
)
3/2

× 𝑒
−
𝑚𝑣2

2𝐾𝑏𝑇  

A product of 3 dimensional vectors and solving for the 

3-dimensional equation with respect to position and time, the 

random motion and density of these particles at any given 

location in space is accounting for using η(𝑟, 𝑡). 

𝑓(𝑟, 𝑣, 𝑡) = η(𝑟, 𝑡) (
𝑚

2π𝐾𝑏𝑇(𝑟,𝑡)
)
3/2

× 𝑒
−

𝑚|𝑣|2

2𝐾𝑏𝑇(𝑟,𝑡)  

Considering variational mass for all available particles, 

𝑓(𝑟, 𝑣, 𝑡) = √
8

π3
∑ η𝑖(𝑟, 𝑡) (

𝑚𝑖

𝐾𝑏𝑇𝑖(𝑟,𝑡)
)
3/2

𝑖 × 𝑒
−
𝑚𝑖|𝑣−𝑢𝑖(𝑟,𝑡)|

2

2𝐾𝑏𝑇𝑖(𝑟,𝑡)   

where 𝜂(𝑟, 𝑡) is the corresponding particle density coeffi-

cient Taking for idealistic stationary consideration, motion 

independent equation turns out to be –  

𝑓(𝑟, 𝑡) = √
8

π3
∑ η𝑖(𝑟, 𝑡) (

𝑚𝑖

𝐾𝑏𝑇𝑖(𝑟,𝑡)
)
3/2

𝑖   

Solving with the initial boundary conditions at t=0, at 

boundary condition the flux and energy operators acts con-

stant without any change and the velocity of those particles at 

that instance is bounded by u(r,0). The differential equation 

becomes –  

∂𝑓(𝑟,0)

∂𝑡
= 𝐷∇2𝑓(𝑟, 0) − Φ(𝑟, 0)∇𝑓(𝑟, 0) ∣𝑡=0  

At the boundary condition, the equation turns out to be –  

∂𝑓(𝑟,0)

∂𝑡
= 0 ∣𝑡=0  
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Using the Maxwellian distribution for consideration of the 

randomness of the motion in 3D subspace to figure out the 

solution of the probability density curve of the Focker-Planck 

equation gives a result into how many active particles are col-

liding into the lunar regolith in any given instant of time. The 

relativistic Maxwellian distribution provides a new probability 

distribution for astrophysics, with applications to random mo-

tion of multiple particles at controlled environment temperature 

of free space [30]. The derived Focker-Planck equation con-

tains the solution for all the components corresponding to the 

flux and energy that provides a unified relation to understand-

ing the absorbance of the particles in the lunar surface at a 

specific wavelength of spectrometer. The flux term accounts for 

the directed motion of particles, potentially towards or away 

from regions on lunar soil. The energy term introduces a bias in 

particle motion based on the local energy landscape. This takes 

in consideration of the interparticle attraction and the genera-

tion of the potential around the targeted surface region due to 

the emission of flux. The divergence of the product of the gra-

dient of the energy field and the Maxwellian distribution func-

tion represents how the spatial distribution evolves based on the 

energy landscape. This term introduces a bias in particle motion 

based on the local energy. While the negative divergence of the 

product of the flux and the Maxwellian distribution function 

represents how particles move in response to the flux. This term 

introduces a directed motion in the direction of the flux. the 

scaled reflectance R represents the ratio of reflected radiant flux 

to the incident radiant flux [32]. The product of the value of 

scaled reflectance for a particular region with the corresponding 

flux and energy equations provides a detailed analysis of in-

teraction of these particles with the surface of the lunar regolith 

[33]. Scaled reflectance –  

∥ 𝑅 ∥= ∑ 𝑅𝑖𝑖   

∥ R ∥ represents the average of specific scaled reflectance 

in the region –  

𝐿𝑓𝑙𝑢𝑥𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =∥ 𝑅 ∥
∂𝑓(𝑟,𝑡)

∂𝑡
∣𝑣=0  

The values obtained from [27] is incomplete at certain co-

ordinate range and these missing values are obtained by 

training an ARIMA model with the training correlation data 

between the trained regions and the contours obtained in the 

figure 2. Correlating these datasets provides a generation of 

data for remaining coordinate system for mapping between 

these products as obtained in the equation 26. The Autocor-

relation and the Partial Autocorrelation plots are used to de-

termine the p, d, and q parameters of the ARIMA model [34]. 

Autocorrelation and Partial Autocorrelation Functions (ACF 

and PACF) are used to identify the correlation structure in 

time series data. They help us understand the relationships 

between the observations at different time lags and aid in 

determining the order of autoregressive (AR) and moving 

average (MA) components in ARIMA models. ACF plots 

show how correlated the time series is with its past values (lags). 

If the ACF plot shows a significant positive correlation at a 

specific lag and then decreases to zero as lags increase, it sug-

gests that there is a potential MA term at that lag. In our case, 

the Autocorrelation plot is a discrete-valued function ranging 

from 1 and descending after each interval to a range between 

0.5 and 0, which suggests that there may be a potential moving 

average term present, this further suggests that p may take 

values greater than 1. There is a slowly decaying correlation 

with the past lags and this lag remains constant for the future 

values of the data. This pattern is common in time series data 

with a mild trend or seasonal patterns. It suggests that past 

values can provide useful information for forecasting future 

values. An approach of using the AIC (Akaike Information 

Criterion), it is used for model selection and comparison in the 

context of time series analysis, such as in the case of ARIMA 

models. AIC is calculated based on the likelihood function of 

the model and the number of parameters used in the model [35]. 

The goal when using AIC is to find the model that mini-

mizes this criterion, as a lower AIC score indicates a better 

trade-off between fitting the data well and using fewer pa-

rameters. In practical terms, we can compare different 

ARIMA models by calculating their respective AIC scores 

and selecting the model with the lowest AIC value. A limit is 

set on the value of each parameter since higher values of the 

parameters are avoided, as they result in higher error per-

centage data, in our case the values are restricted between 1 to 

3, since by trial and error, a trivial solution is not obtained as a 

value for the parameter, and 0 is neglected. Upon comparison 

with the range 1 to 3 and 1 to 4, both result in the same solu-

tion set for the parameters, i.e. (2,1,3). Hence total of 27 pos-

sible outcomes are expected, out of which 7 are selected based 

on the least AIC score both result in the same solution set for 

the parameters, i.e. (2,1,3) the remaining values of AIC are 

shown in Table 1 [36].  

Table 1. The obtained AIC confidence values for the prefered 

paramets obtained from AIC model. 

Preferred values of the Parame-

ters (p,d,q) respectively as calcu-

lated by the AIC Measure 

Values of AIC coefficient 

(1,1,1) 2350.7399152258577 

(1,1,2) 2352.35965548928 

(1,1,3) 2350.889162358925 

(2,1,1) 2348.1759425833716 

(2,1,2) 2350.1489578203823 

(2,1,3) 2345.1653818888644 

(2,2,2) 2358.4807406913496 
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Applying the AIC measure to the model, we obtain the best 

AIC value as 2345.1653818888644 and the best parameters as 

(2, 1, 3) for (p, d, q) respectively. The dataset is fit onto the 

model to predict future values. The obtained order is 6 for the 

parameter values (the value of the product pdq is defined as 

the order of the ARIMA model) hence it is an order 6 ARIMA 

model with a moving average value of 2, the future values are 

predicted, but adjusting the future value to a length that covers 

the entire dataset, so that the majority of the data is fit onto the 

model for better results. Two loops iterate over each combi-

nation of (p, d, q) one for calculating the most suitable and 

least value for the parameters as per the best AIC value and 

the other for fitting the model onto the parameters as obtained 

from the earlier loop. Within the loop, if the model fitting is 

successful and the calculated AIC value is smaller than the 

current AIC, the best AIC and best value for parameters are 

updated with the new values. The loop is made to continue in 

case of any error and ends only after obtaining the best AIC 

and the best parameter value [37]. Using inbuilt modules in 

Python for ARIMA modelling on a dataset, the Autocorrela-

tion and Partial Autocorrelation plots are found. With the help 

of these plots along with the idea of AIC (Akaike Information 

Criterion) which is a statistical measure that compares dif-

ferent models based on the p, d, and q parameters. It returns 

the most appropriate values for the parameters; by measuring 

the AIC quotient, the algorithm compares the least AIC quo-

tient and returns the p, d, and q parameters to fit onto the 

model. As per the results, the values of p, d, and q parameters 

as 2, 1, and 3. The model is then fit onto the data frame with 

the value of the above parameters. The plot of the Actual 

values versus the Predicted values are obtained and the Mean 

squared error is calculated to be 1.72 and the percentage error 

for this model is 18.53%. Parsing these predicted values into 

the system of equations derived from the Focker-Plank equa-

tion gives a set of values for each coordinate spectrum and the 

same information is been superimposed on a cylindrical im-

age of moon taken by the Lunar Reconnaissance Orbiter 

Camera as shown in Figure 4 provides the final plot of the 

equation and shows an image with detailed understanding of 

interaction of Flux with the surface of the Lunar Regolith. The 

spots closer to brighter region resembling with white spots 

provides an insight of higher reflectivity of that region of the 

lunar surface whereas the darker spots closed to black shows a 

region with more absorbance of radiation as the scaled re-

flectivity values are less showing higher absorbance and less 

reflectance. The figure 4 is obtained by mapping the values 

obtained from the ARIMA trained model for corresponding 

latitude and longitude coordinates on a cylindrical image of 

the surface of the moon. 

 
Figure 4. Radiation flux plot for lunar regolith mapped on a Lunar cylindrical image with latitudes ranging from -90 to 90 and longitudes from 

-180 to 180 at co-ordinate with a resolution of 16.00 px/deg scaled at 1895.21 m/px. 

The corresponding change in surface flux interaction is 

mapped in the form of an inferno map. The understanding of 

the scaled reflectance can be understood from Figure 4 and it 

indicates the regions of the moon with the corresponding 

thermal characteristics of the region and the impact of radia-

tion. The more the scaled reflectance the higher the ratio of 

particles hitting the surface to getting absorbed proving a 

higher radiation and dose rates in the regions whereas the 

darker spots provide an understanding of higher absorbance 

with a smaller number of particles being reflected back to 

space and more density of particles being absorbed in the 

surface. The values of reflectance obtained from the contour 

regions are compared with the values of scaled reflectance. To 

validate, the results are cross-verified with the existing albedo 

map which depicts the proton to neutron ratio from the cosmic 

ray telescope for the effects of radiation as shown by Wilson 

et. al [38]. The acquired data not only disclose thermal char-

acteristics, compositional details, and the impact of space 

weathering but also shed light on the calibration of optical 

instruments operating remotely. The revelation that the lunar 
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regolith‟s thermal properties deviate from theoretical models 

underscores the significance of on-site measurements in re-

fining our understanding of the Moon‟s surface conditions. 

Moreover, the observed changes in brightness, attributed to 

the removal of fine particles by the lander‟s exhaust, highlight 

the dynamic nature of the lunar environment, challenging 

preconceived notions. 

3. Conclusions 

Analysis of interplay of Galactic Cosmic Radiation (GCR) 

and Solar Energy Particles (SEP) on lunar surface has pro-

vided LET flux plots. The study successfully predicts radia-

tion levels and dose rates for different ionic particles im-

pacting the lunar surface using ARIMA and Random Forest 

machine learning prediction models. The integration of di-

verse data sources has led to predictability of radiation envi-

ronment on the lunar regolith. Comparing prediction model 

results with actual observations using past mission data from 

CRATER and OLTARIS enhances prediction reliability. 

The study of scaled reflectance has generated an albedo 

map of the lunar surface which is a significant achievement, 

offering insights into safer areas for human habitation and 

scientific activities. The albedo provides a visual under-

standing of radiation across the lunar surface with real time 

data. The research contributes to the broader understanding 

of space environments and radiation effects, applicable to 

spacecraft design, astronaut safety protocols, and protective 

shielding technologies. 
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