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Abstract: In survey sampling statisticians often make estimation of population parameters. This can be done using a number 
of the available approaches which include design-based, model-based, model-assisted or randomization-assisted model based 
approach. In this paper regression estimation under model based approach has been studied. In regression estimation, 
researchers can opt to use parametric or nonparametric estimation technique. Because of the challenges that one can encounter 
as a result of model misspecification in the parametric type of regression, the nonparametric regression has become popular 
especially in the recent past. This paper explores this type of regression estimation. Kernel estimation usually forms an integral 
part in this type of regression. There are a number of functions available for such a use. The goal of this study is to compare the 
performance of the different nonparametric regression estimators (the finite population total estimator due Dorfman (1992), the 
proposed finite population total estimator that incorporates reflection technique in modifying the kernel smoother), the ratio 
estimator and the design-based Horvitz-Thompson estimator. To achieve this, data was simulated using a number of commonly 
used models. From this data the assessment of the estimators mentioned above has been done using the conditional biases. 
Confidence intervals have also been constructed with a view to determining the better estimator of those studied. The findings 
indicate that proposed estimator of finite population total that is nonparametric and uses data reflection technique is better in 
the context of the analysis done. 
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1. Introduction 

Many non-parametric techniques have in the recent past been 
used in regression estimation. They include techniques such as 
the k-nearest neighbors, local polynomial regession, spline 
regression, and orthogonal series [9, 19]. Besides this and in an 
attempt to correct the unpleasant boundary bias induced by the 
conventional Nadaraya-Watson estimator, many statisticians 
have endeavoured to modify it. Some of these include Gasser-
Müller [13] and Priestley-Chao (1972). The drawback of these 
techniques is that their bias components were managed but at the 
expense of higher variability. In the framework of the model-
based approach, regression estimation is paramount in obtaining 
estimates of the non-sample population. The flexible nature of 
the non-parametric technique has made it an attractive option in 
statistical researches [6]. The technique entails use of kernel 

smoothers that assign weights to observations used in estimation. 
In this paper we explore yet another new technique of reflection 
as a way of modifying the kernel smoothers with a view to 
minimizing the boundary bias the shortcoming of the Nadaraya-
Watson estimator. 

This paper has been organized as follows: in section 2, we 
give a brief review of the literature regarding non-parametric 
regression, in section 3; a new nonparametric regression 
estimator for finite population total is proposed. The 
estimator whose properties have been stated makes use of a 
modified kernel smoother obtained through reflection of data 
technique. Empirical analysis has been done in section 4 
using some artificially simulated datasets. Discussion of 
results and conclusion is given in section 5. 
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2. Literature Review 

A model- based non-parametric model ( )ξ is 

conventionally of the form: 

( )i i iY m X e= +  i=1, 2, …, n                  (1) 

where Yi- is the variable of interest 
Xi-is the auxiliary variable 
m-is an unknown function to be determined using sample 

data ei-is error term-assumed to be N(0, 2σ ) under the model

( )ξ  

In nonparametric regression estimation ( )im X is an 
unknown function and can therefore be determined by the 
data sampled. Since this is a sample statistic, there are many 
estimators in place that have been developed by statisticians. 
They include the famous Nadaraya-Watson estimator which 
many have attempted to modify because of its weakness at 
the boundary. These can be found in Eubank [11] and Gasser 
and Müller [13]. 

A simple kernel estimator at an arbitrary point x as 
presented by Priestley and Chao (1972) can be written as: 
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where h is the bandwidth, sometimes referred to as the tuning 
parameter or window width. K(.) denotes a kernel function 
which is also twice continuously differentiable, symmetrical and 
having support within the bounded interval [-1, 1] such that: 

(a) 2
2( ) 1     (b) ( ) 0  (c) ( ) : ( )( )K z dz zK z dz z K z dz K K= = = < ∞∫ ∫ ∫  (3) 

For the derivation of the asymptotic bias term and even the 
variance term, one can see Kyung-Joon and Shucany [15]. 
They are respectively given by: 

Bias[ ˆ ( )m x ] = 2 2
2

1
( ) ( ) ( )

2
h m x K K o h′′ +            (4) 

and 

Var[ ˆ ( )m x ] = 
2 1

( )R K o
nh nh

σ  +  
 

                         (5) 

where 2( ) ( )R K K Z dz= ∫  

The direct proportionality of the bias and the bandwidth means 
a small bandwidth will reduce it. While this is true for the bias a 
similar action of decreasing the bandwidth increases the variance 
making the regression curve to be wiggly. The implication of this 
scenario is that an optimal bandwidth that minimizes the mean 
square error (MSE) is necessary. Although with the use of the 
knowledge of calculus it is possible to obtain, such a bandwidth 
has never provided a solution to the boundary menace. Following 
this, Gasser and Müller [13] proposed optimal boundary kernels to 
address the problem. They suggested multiplying the truncated 

kernel at the boundary by a linear function. A generalized 
jackknife approach was proposed by Rice [16]. Eubank and 
Speckman [12] suggested the use of “bias reduction theorem” to 
remove the boundary effects. Schuster [18] gave another 
technique of correcting the boundary bias by using reflection of 
data method in density estimation. The same idea has also been 
reviewed by Albert and Karunamuni [1] among others, but 
notably within density estimation. This technique has further been 
examined in this paper but in the context of regression estimation. 
The technique is applied in estimating the finite population total 
and its performance has been analysed against other known 
estimators such as: 

The ratio estimator given by: 
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population parameter, 
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variable while and 
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∑ is the equivalent for the auxiliary 

variable assumed to be known for the entire population. The 
entire population total of this auxiliary variable is given by 

1

N

i

i

X

=
∑ . It is known that the ratio estimator is the Best Linear 

Unbiased Predictor (BLUP), Cochran [7], Cox [8] and 
Brewer [5]. 

Another approach to estimation is the design-based 
estimator suggested by Horvitz-Thompson [14] is given by: 

1ˆ
HT i i

i s

T yπ −

∈
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While the nonparametric regression estimator proposed by 
Dorfman [10] for finite population total is: 

1 1

ˆ ˆ ( )
n N

np i NW i

i i n

T y m x

= = +

= +∑ ∑                     (8) 

where ˆ ( )NW im x  is the Nadaraya-watson estimator. 

As noted above, this estimator suffers from boundary effects. 
But even with that weakness the nonparametric techniques in 
regression estimation have been known to outperform its 
counterparts-the fully parametric and semiparametric 
techniques. Dorfman [10] did a comparison between the 
population total estimators constructed from the famous 
design-based Horvitz-Thompson estimator and the Nadaraya-
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Watson estimator- the nonparametric regression estimator 
where he found out that the nonparametric regression estimator 
better reflects the structure of the data and hence yields greater 
efficiency. This regression estimator, however, suffered the so 
called boundary bias besides facing bandwidth selection 
challenges. Breidt and Opsomer [3] did a similar study on 
nonparametric regression estimation of finite population total 
under two-stage sampling. Their study also reveals that the 
nonparametric regression with the application of local 
polynomial regression technique dominated the Horvitz-
Thompson estimator and improved greatly the Nadaraya-
Watson estimator. Breidt et al [4] carried out estimation of 
population of finite population total under two-stage sampling 
procedure and their results also show that the nonparametric 
regression estimation is superior to the standard parametric 
estimators when the model regression function is incorrectly 
specified, while being nearly as efficient when the parametric 
specification is correct. 

We also propose an estimator under this nonparametric 
regression in the model-based framework. 

3. Proposed Estimator 

1 1
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where the first term 
1
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∑ is the sample total observed and 

therefore under model-based approach it will not be 

necessitate estimation while the second term
1
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= +
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the non-sample total term that is to be estimated non-
parametrically using the reflection technique. The data-
reflected technique therefore provides the data through 
reflection method so that this information is put on the 
negative axis thereby supplying the kernel with the 
information required on this section.  

3.1. Data Reflection Procedure 

The following simple steps give the procedure on how 
reflection of data is done. Let the {(X1, Y1), (X2, Y2),…, (Xn, 

Yn)} be the set of n observations in the sample. If the data is 
augmented by adding the reflections of all the points in the 
boundary, to give the set {(X1, Y1), (-X1, Y1), (X2, Y2), (- X2, 
Y2)..., (-Xn, Yn), (Xn, Yn)}. If a kernel estimate m*(x) is 
constructed from this data set of size 2n, then an estimate 
based on the original data can be given by putting
ˆ ( ) 2 *( )m x m x= , for 0x ≥ , and zero otherwise. This gives the 

modified general weight function given by: 
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It can be shown that the estimate will always have zero 

derivative at the boundary, provided the kernel is symmetric 
and differentiable. The estimate has also been shown under 
the section on properties of the data-reflected technique that 
it is a p.d.f for the symmetric kernel. In practice it will not 
usually be necessary to reflect the whole data set, since if 
Xi/h is sufficiently large, the reflected point - Xi/h will not be 
felt in the calculation of m*(x) for x> 0, and hence reflection 
of points near 0 is all that is needed. Silverman [17] in his 
example, states that if K is the Gaussian kernel there is no 
practical need to reflect points beyond Xi > 4h. 

3.2. Asymptotic Properties of the Proposed Estimator 

It can be shown (one can see Albers [2] for similar 
derivation under the density estimation) that the asymptotic 
bias and the variance of the proposed estimator are 
respectively given by: 
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4. Empirical Study 

To examine the performance of the proposed estimator, 
simulation was done from various common distributions and 
analysis was done to compare them based on their confidence 
lengths and conditional biases. Table 1 gives the models used 
in simulation. 

Table 1. Equations of models simulated. 

Model Equation 

Linear 1 2( 0.5) ~ (0,1)+ − +x e N  

Quadratic 21 2( 0.5) ~ (0,1)+ − +x e N  

Jump 0.65 0.651 2( 0.5) 0.65 ~ (0,1)≤ >+ − + +x xx I I e N  

Sine 2 sin(2 ) ~ (0,1)π+ +x e N  

Exponential exp( 8 ) ~ (0,1)− +x e N  

Bump ( )21 2( 0.5) exp 200( 0.5) ~ (0,1)+ − + − − +x x e N  

4.1. Unconditional 95% C.I for the Respective Population 

Total Estimators 

The 95% confidence interval of each of the estimators was 
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also computed using the formula given by;

2

ˆ ˆ( )T T Z Var Tα= ±  and the interval length is therefore the 

difference between the upper limit and the lower limit. The 
results are presented in table 2. 

Table 2. Summary results for the unconditional confidence interval lengths. 

MODEL ˆ
nprT  ˆ

npT  ˆ
HTT  ˆ

RT  

LINEAR 10.70248 11.51506 60.75419 10.4797 

QUADRATIC 10.67005 11.09624 18.99733 72.39773 

SINE 10.77354 19.22728 75.80554 185.6727 

EXPONENTIAL 10.47873 12.36678 25.15132 30.85746 

JUMP 11.18108 12.98228 16.63127 97.24218 

BUMP 11.12733 20.55477 65.69977 31.66942 

Notice that the confidence lengths given by the proposed 
estimator in the first column are the least of all except for the 
ratio estimator under the linear model. 

4.2. Conditional Performance of the Respective Population 

Total Estimators 

To study the conditional performance of the estimators, the 
sample means 'ix s were calculated and ranked in ascending 

order while maintaining the corresponding estimates, ˆ 'iT s , 

of the finite population totals. Forty groups of 50 samples 
each were then obtained as per the new order of the rankings. 
From each of these groups the sample means of the auxiliary 

variable were averaged to give, jx , the mean of the sample 

means of the j
th group (j= 1, 2, …, 40). The corresponding 

population totals i.e ˆ 'jT s  for the various population 

estimators studied were also computed and used to calculate 
the respective conditional biases for the models given. The 
results have been plotted in the Figures 1-4. 

The figures portray that the proposed estimator is better 
placed than the other estimators examined in terms of posting 
a smaller conditional bias. 

 

Figure 1. Comparison of conditional bias for the respective finite population 

total estimators (Quadratic model). 

 

Figure 2. Comparison of conditional bias for the respective finite population 

total estimators (Jump model). 

 

Figure 3. Comparison of conditional bias for the respective finite population 

total estimators (Sine model). 

 

Figure 4. Comparison of conditional bias for the respective finite population 

total estimators (Exponential model). 
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5. Conclusion 

The proposed estimator of the finite population total that 
uses the reflection technique shows narrower confidence 
lengths as opposed to the others considered in the study. The 
smaller 95% confidence lengths is a characteristic of a better 
estimator that is more precise and accurate. 

Further the graphs given in the figures above shows that 
the proposed estimator outwits the others. The graphs show 
that the proposed estimator is almost conditionally unbiased. 

It can therefore be concluded that based on the analysis 
done in this study reflection technique can be of benefit in 
correcting the boundary bias usually experienced with the use 
of kernel estimators in regression estimation. 
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