
 

American Journal of Remote Sensing 
2021; 9(1): 23-32 

http://www.sciencepublishinggroup.com/j/ajrs 

doi: 10.11648/j.ajrs.20210901.13 

ISSN: 2328-5788 (Print); ISSN: 2328-580X (Online)  

 

Employing Remote Sensing Tools for Assessment of Land 
Use/Land Cover (LULC) Changes in Eastern Province, 
Rwanda 

Jean Paul Nkundabose
1, *

, Felix Nshimiyimana
1
, Gratien Twagirayezu

2
, Olivier Irumva

3
 

1School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, PR China 
2School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, PR China 
3School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, PR China 

Email address: 

 
*Corresponding author 

To cite this article: 
Jean Paul Nkundabose, Felix Nshimiyimana, Gratien Twagirayezu, Olivier Irumva. Employing Remote Sensing Tools for Assessment of 

Land Use/Land Cover (LULC) Changes in Eastern Province, Rwanda. American Journal of Remote Sensing. Vol. 9, No. 1, 2021, pp. 23-32. 

doi: 10.11648/j.ajrs.20210901.13 

Received: February 27, 2021; Accepted: March 11, 2021; Published: March 22, 2021 

 

Abstract: The present paper attempted to study land use/land cover (LULC) changes in a rural region of Eastern Province, 

Rwanda. The particular study area consists of part of Ngoma, Rwamagana, Kayonza, Bugesera districts of Eastern province, 

Rwanda, and a tiny part of Burundi. The study considered LULC changes that happened in 15 years from 2005 to 2020. By means 

of Remote Sensing and GIS tools, Land use/Land cover (LULC) changes were detected. Possible causes linked to historical 

changes were highlighted accordingly. Multi-temporal remote sensing images (Landsat imagery) were used to generate land 

use/land cover (LULC) maps. Two temporal satellite images were collected, preprocessed, and classified through supervised 

Image classification stages in ENVI 5.1. Corresponding maps were exported by ArcGIS 10.7. Seven important classes including 

water, bare land, wetlands, agriculture, vegetation, forest, and built-up area were classified and detected for changes using both 

Image change workflow and Thematic change workflow tools in ENVI 5.1. Among seven classes of land use/land cover (LULC), 

four experienced gains while built-up area, forest, and bare land witnessed decrease/losses over the last 15 years period (2005-

2020). Like Forest diminished from 197.8821 km
2
 in 2005 to 56.9304 km

2
 in 2020. Several factors including government policies 

and regulations, population growth, and economic development can be attributed to these changes. The present work can provide 

important insights on land use planning and management for the area under consideration and we believe this work to contribute 

to the literature on the application of ENVI and related remote sensing tools. 
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1. Introduction 

Rwanda as well as other countries on the globe are 

experiencing rapid, wide-ranging changes in Land use and 

Land cover. Land use/land cover change (LULC) is the major 

underlying cause of global environmental change [1]. Only a 

few landscapes on earth in peripheral sites and remote areas 

still have their natural state maintained [2]. The alarming 

growth rate of the global population, which in turn leads to 

an increase in anthropogenic activities, has greatly altered the 

land use and land cover (LULC) [2]. This speedy alteration in 

LULC leads to forest deterioration and transformation of 

fertile land to urban construction with a significant impact on 

the ecosystem [3]. LULC changes are drastically altering the 

earth’s surface and this transformation makes land surface 

management one of the pressing global ecological challenges 

to address in the 21
st
 century [4]. For instance, more than 80 

million ha of forest have been converted into other land uses 

in African countries between 1990 and 2015 [2]. Concerning 

natural resources management and monitoring of 

environmental changes, it is of great significance to 

understand and map LULC change. LULC studies help 
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strongly in policymaking. LULC changes indicate how 

humans interact with the environment [5] and a plethora of 

factors in space and time at different magnitudes play along. 

These factors include socioeconomic, political, natural, 

cultural, and several other factors [6, 7]. In recent decades, 

Rwanda has remarkably changed in terms of economy, 

population growth, and urbanization which in turn affect its 

landscape and environment in general. The part of the rural 

area under consideration in the eastern province of Rwanda is 

no exception in terms of land use/land cover (LULC) 

Changes. Considering various national policies like land 

consolidation and urban growth (Inhabitants in 

agglomerations) known locally as Imidugudu, Agriculture 

land, forest, built-up area, and several other LULC classes 

can be expected to change compared to colonial times. 

Naturally, Land is the most important resource, which is 

composed of soil, water, and the associated flora and fauna, 

thus involving the total ecosystem. As a result of economic 

development in terms of increase in industrialization, 

urbanization, and forest to agricultural land conversions, the 

land resources have been exploited to a greater extent leading 

to land degradation [8]. In the light of the above, factors 

attributing to Land Use Land Cover (LULC) change are 

directly or indirectly dependent on population growth [9]. As 

the population of a given area increase, the demand for land 

cover such as built-up area also increases, while other land 

cover classes such as bare land, vegetation, decreases as a 

result of the increased demand for the built-up area. 

Consequently, these changes in most cases if not 

continuously checked comes with certain negativities which 

may affect not only the environment but also its inhabitants. 

However, Accurate and up-to-date land cover change 

information is necessary for understanding and assessing the 

environmental consequences of such changes. The Land Use 

and Land Cover (LU/LC) change pattern is one of the 

important parameters which depict this change [8]. Land use 

can be defined as the use of land by humans, usually with an 

emphasis on the functional role of land in economic 

activities. In contrast, land cover can be defined as the 

observed biophysical features on the earth’s surface [10]. 

Knowledge of the distribution of land use and land cover is 

essential for planning and management activities [8, 11]. 

Land use patterns reflect the character of a society’s 

interaction with its physical environment, a fact that becomes 

obvious when it is possible to see different economic and 

social systems occupying similar environments [8, 12]. 

LULC changes are major issues of global environmental 

change. Remote Sensing has the capability of capturing such 

changes, extracting the change information from satellite data 

requires effective and automated change detection techniques 

[9, 13, 14]. The importance of remote sensing was 

emphasized as a unique view of the spatial and temporal 

dynamics of the processes in urban growth and land use 

change [15]. Satellite remote-sensing techniques have 

therefore been widely used in detecting and monitoring land 

cover changes at various scales with useful results [16–18]. 

In the present work, two temporal satellite images covering 

the area under consideration were used to detect LULC 

changes for the period of 15 years (2005-2020). Stepwise, 

images were first preprocessed using ENVI 5.1 and then 

processed for detecting LULC changes. Some influencing 

factors behind the changes were highlighted. After this 

introductory part, the rest of the paper is organized as 

follows: Section 2 presents materials and methods used in 

this study, Section 3 presents results and discussions, and 

finally, Section 4 concludes the study. 

2. Materials and Methods 

2.1. Study Area 

Eastern Province is the largest, the most populous, and the 

least densely populated of Rwanda's four provinces and Kigali 

City. It was created in early January 2006 as part of a 

government decentralization program that re-organized the 

country's local government structures. It has seven districts: 

Bugesera, Gatsibo, Kayonza, Ngoma, Kirehe, Nyagatare and 

Rwamagana. The capital city of the Eastern Province is 

Rwamagana. The Eastern Province comprises the former 

provinces of Kibungo and Umutara, most of Kigali Rural, and 

part of Byumba. The present part under study is mostly 

covering Ngoma district and covers small parts of Bugesera, 

Kirehe, Kayonza, and Rwamagana districts and a tiny part of 

Burundi. In 2012, Ngoma district was ranked second in terms 

of population density (390 inhabitants/km
2
) at the provincial 

level while Bugesera was fourth (282 inhabitants/km
2
) 

(https://www.easternprovince.gov.rw/index.php?id=18&L=1) 

A vulnerability analysis show that the Eastern Province is the 

most vulnerable area in Rwanda to climate change, given that 

it serves as the ‘bread basket’ of Rwanda with the largest 

share of arable land, therefore critical to the country’s food 

security, with the poor particularly vulnerable to natural 

hazards like flooding and drought. This province is 

characterized by observable climate impacts, including a high 

frequency of rainfall deficit, late rainfall onsets, early rainfall 

cessations, and a significant number of dry spells. 

Demographic pressure associated with high demand for 

wood products and other human activities constitutes the 

main cause of reduction of the vegetation and tree cover 

causing soil erosion and land degradation further exacerbated 

during rainy seasons. Prolonged droughts are also frequent in 

the east and southeast and tend to be cyclical and persistent. 

Droughts are often responsible for famine, food shortages, 

reduction in plant and animal species, and displacement of 

people in search of food and pasture. At times this has led to 

conflicts over different land uses such as protected areas, for 

instance forcing livestock herders to move livestock into 

Akagera National Park during the dry season [19]. The part 

being analyzed for LULC changes contains important lakes 

like lake Mugesera, Lake Rweru, Lake sake, etc. The 

topography of the study area (Ngoma district) is 

mountainous. Using the area measurement tool in ArcMap 

10.7, the rectangular-shaped study region of interest (Figure 

1) covers 1360.357594 km
2
 area. 
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Figure 1. Study area (rectangular shaped) in Rwanda administrative map. 

 

Figure 2. Stepwise methodology employed in this study. 



26 Jean Paul Nkundabose et al.:  Employing Remote Sensing Tools for Assessment of Land Use/Land  

Cover (LULC) Changes in Eastern Province, Rwanda 

 

2.2. Data Acquisition 

The satellite imagery used in this study is from the United 

States Geological Survey (USGS) earth explorer 

(https://earthexplorer.usgs.gov). The study area is covered by 

Landsat frame path row 172-62 of the Worldwide Reference 

System (WRS). In the present work, two scenes from 

Landsat 4–5 Thematic Mapper (TM) and Landsat 8 

Operational Land Imager (OLI) were used to cover the study 

period of almost 15 years (2005-2020) (Table 1). The 

Landsat satellite sensor details and the wavelengths of the 

spectral bands are available at https://landsat.usgs.gov/what-

are-band-designationslandsat- satellites. The acquisition of 

cloud-free satellite imagery is a major limitation in tropical 

regions. The acquired scenes are level-1 terrain-corrected, 

which are most suitable for pixel-level time-series studies. 

The collected images were provided in GeoTiff format and 

resampled to 30 m with the Universal Transverse Mercator 

(UTM)-World Geodetic System (WGS) 84 projection using 

the cubic convolution method. Various similar studies used 

imagery from this site [9, 17, 18, 20]. The collected images 

were processed and analyzed in a stepwise process described 

in Figure 2. 

Table 1. List of satellite imagery used in this study. 

 Acquisition date Sensor Path/row Resolution (m) 

Pre-image 10th March, 2005 Landsat 5 TM 172/62 30 

Post-image 23rd June, 2020 Landsat 8 OLI 172/62 30 

2.3. Image Preprocessing 

Multidata analysis can only be performed on 

geometrically and radiometrically corrected data. Image 

preprocessing should be performed to provide a data set 

that can be used to extract spatial information. This step 

helps to remove geometric and radiometric distortions and 

atmospheric attenuation from the satellite images. Image 

preprocessing was performed through a series of 

sequential operations such as calibration to radiance, 

atmospheric correction or normalization, geometric 

correction, and sub-setting [21]. The image processing and 

classification were performed using ENvironment for 

Visualizing Images® (ENVI) remote sensing software 

(Figure 2). The initial calibration was performed to 

convert the digital numbers (DN) of the Landsat scenes 

into absolute radiance units (W m
−2

 sr
−1

) using the scene 

metadata. The “Fast Line-of-sight Atmospheric Analysis 

of Hypercubes” (FLAASH) module was used to perform 

the atmospheric correction [22]. The radiance image, 

tropical atmospheric profile, and rural aerosol model were 

inputs to the FLAASH. Sub-setting was performed to 

extract the area of interest. 

2.4. Image Classification and Training Sample Collection 

Seven broad LULC classes were categorized in the present 

study. The classes include Water, bare land, Wetlands, 

Agricultural land, built-up area (representing congested 

building, roads, and dispersed settlements), forest, and 

Vegetation (Table 2). To sample training data for image 

classification, Google Earth (GE)™historical high-resolution 

imagery was used for land cover identification. At least 15 

training samples for each class were collected for better 

accuracy. GE provided reference images for 2005 and the 

current image (2020) were used for accurate classification. 

The Landsat series satellites have almost similar wavelength 

bands and spectral characteristics that make sample 

collection easy. The supervised classification method was 

chosen to perform the image classification. This method has 

three stages, training, class allocation, and testing [23]. In the 

training stage, the region of interest (ROI) for different 

LULC categories was created in ENVI 5.1 using GE 

historical imagery. 

Table 2. Land cover classification. 

Land cover type Description 

Vegetation Cultivated zones occupied with either perennial or seasonal crops, postharvest fields, pasture lands 

Forest Areas occupied by closed forest plantation 

Built-up area 

1) Built-up area with congested buildings, includes informal settlements 

2) Built-up area with ventilation space especially high standing zones, tarmac roads, scattered settlements in urban fringe zones and 

rural areas 

Bare land Uncovered, permissive land/soil 

Water 
Permanent natural water bodies such as lakes, rivers, fish ponds reservoirs, and man-made water bodies, the water table in irrigated 

land 

Wetlands Low land with permanent water with floating aquatic vegetation, seasonal flooded low land surrounded by high lands 

Agriculture Cropland 

 

3. Results and Discussions 

3.1. LULC Classification and Mapping 

ENVI supervised image classification provided the final 

LULC maps for the corresponding years as shown in Figures 

3 & 4. By visual interpretation, changes can be seen in 

agriculture, bare land, and Built-up area. Agriculture land 

increased from 2005 to 2020 while bare land is decreasing. 

Built-up area in the before image (pre-image of 2005) 

consisted of scattered settlements while in 2020 built-up area 

can be associated with congested or dense buildings or other 

built-up structures 
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Figure 3. LULC map for 2005. 

 

Figure 4. LULC map for 2020. 

3.2. LULC Change Detection (2005-2020) 

In this part, the study used both image change workflow 

and thematic change workflow to detect LULC changes that 

happened for 15 years period. Image change workflow 
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process resulted in Figures 5 & 6. Looking at figure 5, areas 

that decreased in the data value of the selected band appear 

as red while areas that increased appear as blue. In contrast, 

Thematic change detection takes two classification images 

(before and after images) of the same scene at different times 

and identifies differences between them. Figure 7 illustrates 

the thematic LULC changes that happened at the LULC class 

scale. Table 3 and Figure 8 illustrate the total change scenario 

(2005-2020) with conversion statistics of each class. 

 

 

Figure 5. Image change map (2005-2020). 

 

Figure 6. Image difference map (2005-2020). 
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Figure 7. Thematic Changes happened (2005-2020). 

 

Figure 8. Areal changes/ Gain and losses; class changes by percentage and changes by pixel account. 
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Table 3. Areal class changes statistics (2005-2020). 

Initial State (2005) Area in Km2 

  Water Built-up area Bare land Wetlands Agriculture Forest Vegetation Row Total 

Final 

State 

(2020) 

Water 96.3693 4.563 0.3825 8.226 2.673 7.7724 36.0603 156.0465 

Built up area 0.855 77.3082 31.077 4.7358 42.3774 30.177 4.9842 191.5146 

Bare land 2.3238 11.16 7.0119 1.2186 4.6863 4.6278 8.3745 39.4029 

Wetlands 1.6668 26.6742 3.7035 31.833 47.5893 37.0332 51.2406 199.7406 

Agriculture 2.7486 130.6908 43.8525 22.0122 189.1935 63 23.8374 475.335 

Forest 0.4842 7.2873 1.0233 6.4539 19.0305 15.3567 7.2945 56.9304 

Vegetation 1.8072 32.4324 8.4096 17.0757 85.914 39.915 36.4311 221.985 

Class Total 106.2549 290.1159 95.4603 91.5552 391.464 197.8821 168.2226  

Class Changes 9.8856 212.8077 88.4484 59.7222 202.2705 182.5254 131.7915  

Image Difference 49.7916 -98.6013 -56.0574 108.1854 83.871 140.9517 53.7624  

 

3.2.1. Changes in Built-up Area Class 

The built-up area which comprises the low, medium, 

and high densities road network and other manmade 

structures has witnessed a significant decrease based on 

the analysis carried out (Figure 8 and Table 3). This class 

declined from 290.1159 km
2
 in 2005 to 191.5146 km

2
 in 

2020. Large areas of this particular class amounting to 

31.077 km
2
, 42.3774 km

2, 
and 30.177 km

2 
were converted 

into bare land, agriculture, and forest, respectively (Table 

3). Normally, the change in the built-up area can be 

associated either with construction activities, demolition 

activities, and a change in population density. According 

to the World Bank, population density in Rwanda has kept 

growing from the year 1961 to the year 2018 with an 

annual growth rate of 2.55% [26]. One square kilometer of 

land area in Rwanda was inhabited by 359 people in 2005 

and 499 people in 2018 (recent year). The higher the 

population density means the higher demand in shelter and 

food. With government housing policy and other 

development policies, Rwanda's housing structure has 

drastically changed from unplanned and unorganized 

settlements to decent and sustainable housing [27]. After 

the 1994 genocide against Tutsi, grouped settlements 

(imidugudu) were chosen to improve rural settlements in 

Rwanda. Hence, the decrease in Built-up area here can be 

linked to change in the housing system. In the past years, 

there were scattered buildings compared to congested 

buildings that are presently available in Rwanda as a 

whole as well as the area of consideration. 

3.2.2. Changes in Agriculture Class 

Currently, maize, rice, wheat, Irish potato, beans, tea, 

flowers, coffee, pyrethrum, sugarcane, and cassava are the 

priority crops grown in Rwanda, aligning within the policy of 

the Crop Intensification Programme (CIP) initiated by the 

government in 2007 [24]. More than 60% of Rwandan soil is 

suitable for agriculture as the soils are fertile. Rwanda agri-

sector is noticeably being boosted by the government. The 

present work has shown a drastic increase in the available 

agricultural land within the study area (Figure 8 and Table 3). 

This class enlarged from 391.464 km
2
 in 2005 to 475.335 

km
2
 in 2020. Agricultural land amounting to 130.6908 km

2
, 

43.8525 km
2,
 and 63 km

2
 was converted into built-up area, 

bare land, and forest, respectively (Table 3). The increase in 

agriculture can be attributed to the high demand for food and 

economic development where people are now using 

improved techniques in agriculture and grow crops on a large 

scale. As per Food and Agriculture Organization of the 

United Nations (FAO), 70% of the Rwandan population are 

engaged in agriculture as the main economic activity [25] 

and this implies the high need of land although the land 

resource is very scarce in Rwanda. The high population 

growth rate of Rwanda implies high demand of food as well 

as agricultural land. The driver variable of this increase in 

agriculture class for the considered area in this study can, in 

the same way, be linked to the high demand of food due to 

the upsurge in population growth and agriculture 

intensification. The increase in agriculture ensures food 

security. 

3.2.3. Changes in Wetlands Class 

By definition, wetland refers to “an area that is 

periodically or continuously inundated by shallow water or 

has saturated soils, and where plant growth and other 

biological activities are adapted to the wet conditions” [28]. 

The wetlands which are made up of the river, waterlogged 

areas, and small ponds have witnessed an increase. This class 

enlarged from 91.5552 km
2
 in 2005 to 199.7406 km

2
 in 2020. 

Normally, wetlands are dynamic and develop through time in 

response to changing external conditions either tectonic, 

geological, climatic, or sea level. Wetlands area amounting to 

26.6742 km
2
, 47.5893 km

2
, 37.0332 km

2
, and 51.2406 km

2 

was converted into built-up area, agriculture, forest, and 

vegetation, respectively (Table 3). The change in wetlands 

area can be associated with geomorphological processes and 

climatic settings [28]. 

3.2.4. Changes in Vegetation Class 

Vegetation has significantly increased over the last 15 

years. This class enlarged from 168.2226 km
2
 in 2005 to 

221.985 km
2
 in 2020. This change can be related to 

government policies such as those of soil erosion and 

landslides prevention. The government put the effort into tree 

planting over the years. This is not just for erosion prevention 

but also it helps to emit low carbon emissions. In addition, 

vegetation area amounting to 85.914 km
2
, 39.915 km

2
,
 
and 

32.4324 km
2 

was transformed into agriculture, forest, and 

built-up area, respectively (Table 3). Vegetation increase is a 

good sign for sustainable biodiversity conservation. 
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3.2.5. Changes in Forest and Bare Land Classes 

These two classes have witnessed a decrease in the 

considered period. Forest diminished from 197.8821 km
2
 in 

2005 to 56.9304 km
2
 in 2020 whereas bare land declined 

from 95.4603 km
2
 in 2005 to 39.4029 km

2
. Forest area 

amounting to 19.0305 km
2
 and 7.2945 km

2
 was converted 

into agriculture and vegetation, respectively. Besides, bare 

land amounting to 11.16 km
2
 and 8.3745 km

2
 was converted 

into built-up area and vegetation, respectively (Table 3). The 

change in forest and bare land can be closely linked to the 

increase in agriculture. Some forest and bare land areas have 

turned out to be agricultural land to hamper food insecurity. 

Built-up areas can also contribute to the decrease of the forest 

with overexploitation of it to find some wood construction 

materials in case no clear policies and regulations. Bare land 

can also be diminished by the acquisition of land for 

construction. The loss in the forest can negatively affect 

biodiversity and atmospheric conditions. 

3.2.6. Water 

This natural class has also witnessed a slight increase. 

Water augmented from 106.2549 km
2
 in 2005 to 156.0465 

km
2
 in 2020. Compared to other classes, this class did not 

change to a high extent. Water bodies in the considered 

region are mainly various small lakes. However, water class 

area amounting to 36.0603 km
2
, 7.7724 km

2
, and 8.226 km

2
 

was converted into vegetation, forest, and wetlands, 

respectively (Table 3). Generally, water increase or decrease 

can be linked to climate change either prolonged heavy 

rainfall, ice melting or prolong droughts/global warming. It 

can also increase due to water resources development 

projects like the construction of dams or reservoirs. 

4. Conclusions 

Employing Remote Sensing and GIS tools in analyzing the 

LULC trend over the years was found helpful in the present 

study. All LULC classes except forest, built-up area, and bare 

land have increased over the last 15 years as depicted in Figure 

8 and Table 3. Specifically, wetlands, agriculture, and 

vegetation classes witnessed a big increase. Agricultural land 

expanded from 391.464 km
2
 in 2005 to 475.335 km

2
 in 2020 

while vegetation augmented from 168.2226 km
2
 in 2005 to 

221.985 km
2
 in 2020. Forest was highly diminished over the 

years (from 197.8821 km
2
 in 2005 to 56.9304 km

2
 in 2020). 

Surprisingly, the built-up area witnessed a decrease. We 

suggested some possible causes or implications that are linked 

to some LULC changes that happened in the considered period. 

The data presented in this paper are solely depending on the 

user experience. Future researches can consider accuracy 

assessment for better and very reliable results. Although image 

preprocessing was conducted in this study, the quality of 

satellite images is still questionable in terms of being cloud-

free and this lowers the accuracy of the results. Based on the 

literature, supervised image classification employed in this 

study was used by various researchers and found to give better 

results and high accuracy. This study is very important in the 

application domain of GIS and remote sensing. To 

successfully identify implications or drivers of LULC changes, 

future researches can also include a socio-ecological survey, 

various RS images of different years, improved methods of 

classification precision of RS images. 
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